Our research goal is to understand the molecular mechanisms underlying the evolution of biodiversity. Although many genes important for animal development and behavior have been identified in model organisms, little is known about the molecular mechanisms underlying naturally occurring phenotypic variation important for adaptation and speciation in wild populations. Furthermore, little is known about how newly evolved alleles important for adaptation and speciation spread within natural populations. To understand these ecological and genetic mechanisms, we mainly use stickleback fishes as a model. Our research takes an integrative approach across diverse disciplines.
Yoshida K, Kitano J. Tempo and mode in karyotype evolution revealed by a probabilistic model incorporating both chromosome number and morphology. PLoS Genet. 2021 Apr 16;17(4):e1009502.
Ansai S, Mochida K, Fujimoto S, Mokodongan DF, Sumarto BKA, Masengi KWA, Hadiaty RK, Nagano AJ, Toyoda A, Naruse K, Yamahira K, Kitano J. Genome editing reveals fitness effects of a gene for sexual dichromatism in Sulawesian fishes. Nat Commun. 2021 Mar 1;12(1):1350.
Yamasaki YY, Kakioka R, Takahashi H, Toyoda A, Nagano AJ, Machida Y, Møller PR, Kitano J. Genome-wide patterns of divergence and introgression after secondary contact between Pungitius sticklebacks. Philos Trans R Soc Lond B Biol Sci. 2020 Aug 31;375(1806):20190548.
Ishikawa A, Kabeya N, Ikeya K, Kakioka R, Cech JN, Osada N, Leal MC, Inoue J, Kume M, Toyoda A, Tezuka A, Nagano AJ, Yamasaki YY, Suzuki Y, Kokita T, Takahashi H, Lucek K, Marques D, Takehana Y, Naruse K, Mori S, Monroig O, Ladd N, Schubert CJ, Matthews B, Peichel CL, Seehausen O, Yoshizaki G, Kitano J. A key metabolic gene for recurrent freshwater colonization and radiation in fishes. Science. 2019 May 31;364(6443):886-889.