Archive

2017/09/08

Mr. Harsh Nagpal (Division of Microbial Genetics) received Morishima Award

On September 8, 2017 Mr. Harsh Nagpal (Division of Microbial Genetics) received Morishima Award from the Department of Genetics, SOKENDAI. The Morishima Award is given to students in the Department of Genetics to honor their outstanding performances during PhD studies and to encourage further achievements.


Harsh Nagpal(left) and Director( Harsh Nagpal and Faculty
Harsh Nagpal(left) and KATSURA Director-General(right)


* Morishima Award

* Pioneers in Genetics MORISHIMA, Hiroko

2017/09/06

Spinal RacGAP α-chimaerin is required to establish the midline barrier for proper corticospinal axon guidance

Press release

Acute inactivation of the replicative helicase in human cells triggers MCM8–9-dependent DNA synthesis

Toyoaki Natsume, Kohei Nishimura, Sheroy Minocherhomji, Rahul Bhowmick, Ian D. Hickson, Masato T. Kanemaki

Genes & Development DOI:10.1101/gad.297663.117

Pressrelease (In Japanese only)

Dr. Toyoaki Natsume and Prof. Masato Kanemaki at National Institute of Genetics, ROIS, together with the group led by Prof. Ian D. Hickson at University of Copenhagen, reported a new system to deal with failure in DNA replication. The finding was published in Genes & Development in advance of the print journal.

In cell proliferation, genomic DNA has to be precisely copied into two (DNA replication) before equal distribution to two daughter cells. For doing this, double-stranded DNA is unwound, the process of which is similar to open a zipper of your clothes (Figure 1A). Similar to pulling the ‘slider’ for opening a zipper, the replicative helicase known as MCM2–7 moves on DNA for unwinding double-stranded DNA. However, because human genomic DNA is very long (approx. 2 m per cell), it is challenging to entirely unwind the genomic DNA. Occasionally, the MCM2–7 helicase falls off from DNA when it encounters a roadblock (such as DNA damage). Because reloading of MCM2–7 is strictly inhibited during S phase (when cells carry out DNA replication), this might lead to incompletion of DNA replication, which causes the loss of genetic information from daughter cells unless the cells have a mechanism to deal with the problem.

In this study, the research groups observed how human cells responded to artificial removal of the MCM2–7 helicase by using the auxin-inducible degron (AID) technology that they had developed previously (the information about this technology is described here). They revealed that the MCM8–9 helicase, which is evolutionally related to the MCM2–7 helicase, promotes a non-canonical DNA synthesis as a backup system after removal of MCM2–7 (Figure 1B).

Many anticancer drugs kills cancer cells by inducing DNA lesions, which enhance removal of MCM2–7 from DNA during DNA replication. An inhibitor of the MCM8–9 helicase might enhance the effect of existing anticancer drugs by shutting off this backup system (Figure 2).

Figure1

Figure 1. The process of unwinding double-stranded DNA during DNA replication is similar to that of opening a zipper of your clothes.
(A) Similar to the slider that opens a zipper, the MCM2–7 replicative helicase opens double-stranded DNA in cells.(B) When the replicative MCM2–7 helicase (a normal slider) encounters to a roadblock, it occasionally falls off from DNA. To continue DNA synthesis, cells recruit the MCM8–9 helicase as a backup slider.

Figure1

Figure 2. An MCM8–9-dependent backup system against failure in DNA replication.
The MCM2–7 replicative helicase falls off when encountered to a roadblock on DNA, leading to generation of DNA breaks. In this study, the research groups found that the MCM8–9 helicase continues DNA synthesis on behalf of the MCM2–7 (top right). If MCM8–9 does not work, the accumulation of DNA breaks results in cell death (bottom right).

2017/09/06

Identification of a novel gene that increases cellulose synthesis in plants

Press release

A novel plasma membrane-anchored protein regulates xylem cell-wall deposition through microtubule-dependent lateral inhibition of Rho GTPase domains

Yuki Sugiyama, Mayumi Wakazaki, Kiminori Toyooka, Hiroo Fukuda, Yoshihisa Oda

Current Biology DOI:10.1016/j.cub.2017.06.059

Press release (In Japanese only)

Cellulose is an indispensable material in many applications for our life and industry. Cellulose is the main component of plant cell walls. However, the regulatory mechanism of cell wall synthesis is poorly understood. Our research group identified a novel gene named IQD13 that promotes cell wall synthesis in the model plant, Arabidopsis. We found that IQD13 products stabilizes microtubules that serve as a scaffold of cellulose synthesis. We also found that IQD13 increases area that are active for cell wall synthesis at the cell surface.

Figure1

Figure: IQD13 prevents microtubule disruption and spread of the inhibitor of cell wall synthesis.


  • Twitter
  • facebook
  • youtube