システム神経科学研究室(久保研究室) 視覚情報処理と行動制御の神経回路メカニズム

多くの動物は、外界の視覚情報にもとづいて目的に応じた行動を選び出します。私たちの研 究室では、ゼブラフィッシュをモデルとし、動物が視覚情報を読みとり適切な行動を生み出 すための神経回路メカニズムを研究しています。ゼブラフィッシュでは、さまざまな遺伝学 的、光学的、行動学的な実験手法を用いることができます。これらの利点を生かし、さらに 実験データを定量的に解析することによって、個々の神経細胞タイプとそれらが構成する神 経ネットワークを理解することを目指しています。

視覚刺激に反応する神経細胞を脳全体にわたって同定する

動物が何かの物を視覚としてとらえる時、脳はどのように活動して いるのでしょうか?私たちのグループでは、神経活動を可視 化する技術を用いて、ゼブラフィッシュに視覚刺激を提示す ると同時に脳全体の神経活動のイメージングを行うことによ り、どの神経細胞がどのような刺激に反応するかを明らかに 受精後5日目 ゼブラフィッシュ稚魚 しようとしています。この手法を用いることで、予想もしな かった神経細胞の性質の発見につながることが多くあります。

神経ネットワークを予測し、検証する

神経細胞同士は互いに複雑に連結することによって神経ネットワーク を形成しています。特定の視覚刺激に反応する神経細胞群は、どのよ うなネットワークを介して機能することで、視覚認知を行ったり、行 動を制御したりしているのでしょうか?私たちは、大規模なイメージ ングから同定した神経細胞群の反応特性に基づいて、神経ネットワー クの仮説を立てています。さらに、個々の細胞タイプを遺伝学的に機 能阻害したり、細胞形態を明らかにしたりすることで、神経ネットワ ークの仮説を実験的に検証しようとしています。

主要論文

Wu Y, dal Maschio M, Kubo F, Baier H. (2020) Neuron 108, 722-734. Kramer A, Wu Y, Baier H, Kubo F. (2019) *Neuron* 103, 118-132. Förster D, Arnold-Ammer I, Laurell E, Barker AJ, Fernandes AM, Finger-

Baier K, Filosa A, Helmbrecht T, Kölsch Y, Kühn E, Robles E, Slanchev K, Thiele T, Baier H, Kubo F. (2017) Sci rep. 7, 5230.

研究室メンバー募集

「脳と行動の仕組みを解き明かす」という目標に向かって、 -緒に研究しましょう!

詳しくは、研究室ウェブサイトをご覧ください。 http://kubolab.jp/wp/en/publications/

